
PHYSICAL REVIEW E, VOLUME 65, 056305
Stationary spectrum of vorticity cascade in two-dimensional turbulence
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The logarithmic renormalization predicted by Kraichnan~1971! for the direct cascade of enstrophy in the
inertial range of two-dimensional turbulence has been observed in a numerical simulation. A moderate reso-
lution allows for a very long time integration that provides very good statistics. Deviations from Gaussianity in
the vorticity probability distribution are observed.
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Turbulence of incompressible fluid resists theoretical
scription because of nonlinearity and nonlocality. The o
rigorous arguments are the flux relations for the conser
quantities. For example, two-dimensional~2D! Navier-
Stokes equation can be written for the vorticityv5“3v as

]v

]t
1~v•“ !v5 f 1d, ~1!

wheref andd are forcing and dissipative terms, respective
For the distancesr 12 that are smaller than the scale of th
forcing L yet larger than the dissipation scale, the flux for t
vorticity cascade is as follows:

^~v12v2!•“v1v2&.const. ~2!

The rest of the correlation functions are, strictly speaki
unknown. To achieve some theoretical progress, Batche
Kraichnan, and Leith suggested to exploit the analogy
tween vorticity and passive scalar. The scalar satisfies
same equation]u/]t1(v•“)u5 f 1d with the only differ-
ence thatv is independent ofu @1–3#. In the absence o
pumping and damping, vorticity and passive scalar are b
Lagrangian invariants, i.e., they are transported unchan
by the fluid flow. This allows one to argue, for instance, th
the pair correlation function̂u1u2& is proportional to the
average time needed by two fluid particles to separate f
r 12 to L @4,5#. Power counting in Eq.~2! suggests the scalin
v12v2}r 12. If the velocity field is spatially smooth the fluid
particles separate exponentially, giving ^u1u2&
}l21ln(L/r12), where l is the Lyapunov exponent of th
flow. Had vorticity behaved exactly as a passive scalar,
pair correlator̂ v1v2&} ln(L/r12) would have given the en
ergy spectrumE(k)5kuvku2}k23 @1–3#. Note that the loga-
rithmic correlator of vorticity means that velocity is not e
actly smooth but has at least logarithmic singulariti
contradicting the initial assumptionv12v2}r 12. Clearly,
vorticity is not passive and the separation of fluid particles
sensitive to the value of vorticity they carry~for example,
separation is suppressed inside vortices, i.e., regions
strong vorticity!. Generally, analogies between active a
passive quantities may be very misleading, as they are
instance, between vorticity and magnetic field in 3D and
locity and passive scalar in the Burgers equation@4#. How-
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ever, the analogy is very useful in our case since the m
difference between vorticity and passive scalar is the ren
malization of the Lyapunov exponentl(r ). For vorticity cas-
cade, the Lyapunov exponent depends on the scaler. Indeed,
the speed of particle separation is determined by the fl
motions at scales larger thanr; as the distance grows ther
are less and less such motions and the speed of separ
decreases. This is opposite to what takes place in a n
mooth velocity field where the separation growth is due
smaller scale motions, leading to Richardson’s superdi
sion. Assuming the velocity gradients to bed correlated in
time, Kraichnan found the law of renormalizationl(r )
} ln1/3(L/r ), which gives the spectrum@6#

E~k!}k23ln21/3~kL!. ~3!

The same result can be derived by different uncontrolla
closures based on weak phase coherence@7#. Even though
velocity gradients are long correlated in the Lagrang
frame ~their correlation time is larger than the invers
Lyapunov exponent!, the same renormalization holds@5#. Let
us stress that the arguments of@5,6# are plausible self-
consistency checks at best and cannot be considered as
orous proofs. Here we show that the logarithmic renorm
ization can be observed in numerical simulations.

The logarithmic factor is difficult to detect in numerica
simulations, where statistical fluctuations introduce so
noise in the energy spectrum. For this reason, the ine
range behavior of two-dimensional turbulence is still in d
bate@8–10#. Moreover, even though one can show that e
ergy spectraE(k)}k2a with a.3 are structurally unstable
so that an ultimate small-scale asymptotics has to hava
53 @4,5#, coherent structures may steepen the energy s
trum at intermediate wave numbers@11,12#. Freely decaying
turbulence spontaneously develops coherent vortices@13#
and is not the appropriate case for studying Kraichnan s
ing. A particular forcing that does not allow the formation
coherent structures has to be introduced. To this purpose
use a forcingd correlated in time. A constant energy flux
injected at large scales (4<k<5). The phases of the corre
sponding Fourier modes are randomly changed at each
gration step. The Fourier transform of the force is as follow
f̂ (k)5F(k)eiuk. HereF(k)5F0 for 4<k<5 and zero else-
©2002 The American Physical Society05-1
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where, anduk is a random variable with a uniform distribu
tion between 0 and 2p. The dissipative term d
52mv1n“8v accounts for two different kinds of dissipa
tion: the first term represents linear Ekman friction, while t
second one represents small-scale viscous dissipation
stead of the standard molecular dissipation proportiona
“

2v, here we consider an iterated Laplacian (“

8v) to con-
fine dissipation to small scales, such that the Kolmogo
scale,kn, is close to the smallest resolved scale. Such hyp
viscosity is of common use in numerical simulations, ev
though one cannot be totally certain that it does not affect
properties of the spectrum in the inertial range. With an
propriate choice of parameter values, this system does
develop coherent structures@14,15#.

Starting from any initial condition, force and dissipatio
eventually compensate each other, leading to a statistic
steady configuration where mean energyE5^(“c)2&/2 and

FIG. 1. A snapshot of the vorticity field in the statistically st
tionary regime. Here,n56310217 and m50.12. The numerical
integration has been performed with a pseudospectral method
doubly periodic square domain of size@2p,2p#, with (5123512)
grid points. All the variables and parameters are dimensionless
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In-
to

v
r-
n
e
-
ot

lly

mean enstrophyZ5^(“2c)2&/2 are conserved. Angula
brackets here indicate an average over the whole dom
After the statistically stationary state is reached, the integ
tion is continued for a very long time~more than a thousand
eddy turnover timesTZ5Z21/2). A snapshot of the vorticity
field in this regime is shown in Fig. 1. During this period
time, the variations around the mean values are within
for the energy and within 4% for the enstrophy. From t
vorticity equation~1!, the equation for the enstrophy spe
trum Z(k) can be obtained

1

2

]Z~k!

]t
1

]F~k!

]k
5F~k!2mZ~k!2nk8Z~k!. ~4!

HereF(k) is the enstrophy flux, andF(k) is the enstrophy
forcing. In the stationary regime, the time derivative va
ishes. Force is confined to a limited wave-number ba
therefore, at the other wave numbers the nonlinear te
]F(k)/]k has to be balanced by the dissipative one.
have verified that below the forcing scale (kL.1) the en-
strophy flux F(k) is at least an order of magnitude larg
than the friction dissipation. In the rangekF,k,kn ~where
kF51/L) forcing and dissipation are negligible or zero, a
the enstrophy flux is nearly constant,F(k)5h. The energy
spectrum~3! was suggested precisely for this inertial rang
The time averaged~dimensionless! energy spectrum calcu
lated in our simulation is shown in Fig. 2~a!. Figure 2~b!
shows the compensated spectra, where the compens
function is h22/3k3 ~dotted line!, and h22/3k3@ ln(k/kF)#1/3

~solid line!. We believe that the logarithmic correction that
observed is significant. Indeed, a power function steeper t
k23 does not provide a fit as good as the logarithmic c
rected function does. Such an accurate fit is made poss
here by very large statistics that smooth out the statist
noise in the spectrum. We believe that our data together w
an alternative approach by spectral reduction@8# support
logarithmic renormalization of the energy spectrum in t
vorticity cascade.

Other studies have been recently performed on the di
cascade, showing steep energy spectra, and providing t
retical arguments for the existence of power-law spec
whose scaling depends on the friction coefficient@16,17#.
However, the inertial range is absent in those cases bec
the large friction does not allow for the existence of a ran

a

FIG. 2. Energy spectrum~upper panel! and compensated energy spectra~lower panel!, where the compensation function ish2/3k3 ~dashed
line! andh2/3k3@ ln(k/kF)#1/3 ~solid line!.
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where forcing and dissipation are both negligible. Tho
works thus refer to a totally different regime.

In Fig. 3 the probability density function~PDF! of the
modulus of the normalized vorticityuvu/sv is shown. Here
sv is the vorticity rms. The vorticity distribution has tail
higher than a Gaussian distribution~shown with the dashed
line in the same figure!. The large statistics that we hav
gives confidence up to 6sv in the tail of the distribution.
Note that vorticity PDF found here is similar to the pass
scalar probability density function that is known to have
Gaussian core and exponential tails@4,18#. The non-
Gaussianity of the vorticity PDF is due to an interplay b
tween advection and viscosity. In the absence of the visc
term, the vorticityv* of a fluid particle satisfies a Langevi
equationdv* /dt5 f (t) in the Lagrangian frame. The single
point vorticity PDF is then Gaussian under Gaussian pum
ing. When viscous dissipation is taken into account, the e
lution equation for the vorticityv* of a fluid particle has a
term that depends not only onv* , but also on the spatia
distribution of the vorticity field:

dv* /dt52mv* 2n“8v~v* !1 f ~ t !. ~5!

In a field with spatial and phase correlations, the conditio
averagê“

8v&v* over all the fluid particles withv5v* can
be a nonlinear function ofv* ~see Fig. 4 for the presen
case!. The distribution of“8v(v* ) around the mean valu

FIG. 3. Time averaged probability distribution function of th
modulus of the normalized vorticity. The dashed line indicate
Gaussian distribution with the same variance.
ev
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^“8v&v* can also be non-Gaussian. The presence of non
earity in Eq.~5! is sufficient to get a stationary vorticity PD
that is non-Gaussian. The physical meaning of this non
earity and non-Gaussianity is transparent: the spatial st
ture of the field is such that dissipation on fluid particles w
large vorticity is weaker than in a random field with the sam
variance. The probability of having fluid particles with larg
vorticity is then larger than for a Gaussian, as seen from
tails of the distribution in Fig. 3.

To conclude, in this study we show the presence of
logarithmic correction in the energy spectrum of the dire
cascade of two-dimensional turbulence and observe the
Gaussianity of the vorticity PDF. A moderate resolutio
(5123512) has been used to allow a very long integrat
~more than a thousand eddy turnover times!. This was nec-
essary because forced two-dimensional turbulence can
on long time scales. Our long integration ensures that
system is really in a statistically stationary state and allo
for the computation of time averaged spectra that hav
higher confidence. In a recent paper Lindborg and Alvel
@9# report simulations with a higher resolution (409
34096) but on a much shorter time interval~the whole
length of the simulation was about 23 eddy turnover tim
that is too short to allow for a stationary statistics!.

C.P. would like to thank G. Boffetta, A. Provenzale, and
Tabeling.

a FIG. 4. Conditional average of the viscous term as a function
the vorticity in the point where the iterated Laplacian is calculat
@1# R.H. Kraichnan, Phys. Fluids10, 1417~1967!.
@2# G.K. Batchelor, Phys. Fluids12, 233 ~1969!.
@3# C.E. Leith, Phys. Fluids11, 671 ~1968!.
@4# K.G.G. Falkovich and M. Vergassola, Rev. Mod. Phys.73, 913

~2001!.
@5# G. Falkovich and V. Lebedev, Phys. Rev. E50, 3883~1994!.
@6# R.H. Kraichnan, J. Fluid Mech.47, 525 ~1971!.
@7# M. Lesieur,Turbulence in Fluids~Kluwer, London, 1990!.
@8# J.C. Bowman, B.A. Shadwick, and P.J. Morrison, Phys. R

Lett. 83, 5491~1999!.
@9# E. Lindborg and K. Alvelius, Phys. Fluids12, 945 ~2000!.

@10# T. Gotoh, Phys. Rev. E57, 2984~1998!.
.

@11# B. Legras, P. Santangelo, and R. Benzi, Europhys. Lett.5, 37
~1988!.

@12# P. Santangelo, R. Benzi, and B. Legras, Phys. Fluids A1, 1027
~1989!.

@13# J.C. McWilliams, J. Fluid Mech.146, 21 ~1984!.
@14# M.E. Maltrud and G.K. Vallis, J. Fluid Mech.228, 321~1991!.
@15# V. Borue, Phys. Rev. Lett.71, 3967~1993!.
@16# D. Bernard, Europhys. Lett.50, 333 ~2000!.
@17# G. Boffetta, A. Celani, S. Musacchio, and M. Vergassola~un-

published!.
@18# J. Paret, M.-C. Jullien, and P. Tabeling, Phys. Rev. Lett.83,

3418 ~1999!.
5-3


