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Stationary spectrum of vorticity cascade in two-dimensional turbulence
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The logarithmic renormalization predicted by Kraichnd®71) for the direct cascade of enstrophy in the
inertial range of two-dimensional turbulence has been observed in a numerical simulation. A moderate reso-
lution allows for a very long time integration that provides very good statistics. Deviations from Gaussianity in
the vorticity probability distribution are observed.
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Turbulence of incompressible fluid resists theoretical deever, the analogy is very useful in our case since the main
scription because of nonlinearity and nonlocality. The onlydifference between vorticity and passive scalar is the renor-
rigorous arguments are the flux relations for the conservedalization of the Lyapunov exponer(r). For vorticity cas-
guantities. For example, two-dimension&D) Navier- cade, the Lyapunov exponent depends on the scaheleed,
Stokes equation can be written for the vorticiby=V Xv as  the speed of particle separation is determined by the fluid

; motions at scales larger thanas the distance grows there
® _ are less and less such motions and the speed of separation
WHV'VM_Hd’ @ decreases. This is opposite to what takes place in a nons-
mooth velocity field where the separation growth is due to
wheref andd are forcing and dissipative terms, respectively.smaller scale motions, leading to Richardson’s superdiffu-
For the distances;, that are smaller than the scale of the sion. Assuming the velocity gradients to Becorrelated in
forcing L yet larger than the dissipation scale, the flux for thetime, Kraichnan found the law of renormalization(r)
vorticity cascade is as follows: «InY3(L/r), which gives the spectruii6]
<(V1—V2)~lew2>200n5t. (2) E(k)o(k—3|n—1/3(k|_)_ (3)
The rest of the correlation functions are, strictly speaking,
unknown. To achieve some theoretical progress, Batchelof,he same result can be derived by different uncontrollable
Kraichnan, and Leith suggested to exploit the analogy beclosures based on weak phase coherdii¢eEven though
tween vorticity and passive scalar. The scalar satisfies theelocity gradients are long correlated in the Lagrangian
same equatio@6/dt+(v-V)0=f+d with the only differ- frame (their correlation time is larger than the inverse
ence thatv is independent o [1-3]. In the absence of Lyapunov exponentthe same renormalization holfs]. Let
pumping and damping, vorticity and passive scalar are bothS stress that the arguments [&,6] are plausible self-
Lagrangian invariants, i.e., they are transported unchangeePnsistency checks at best and cannot be considered as rig-
by the fluid flow. This allows one to argue, for instance, thatorous proofs. Here we show that the logarithmic renormal-
the pair correlation functior{#,6,) is proportional to the ization can be observed in numerical simulations.
average time needed by two fluid partic|es to separate from The Iogarithmic factor is difficult to detect in humerical
ri,to L [4,5]. Power counting in Eq(2) suggests the scaling Simulations, where statistical fluctuations introduce some
v1— V%l 1. If the velocity field is spatially smooth the fluid noise in the energy spectrum. For this reason, the inertial
particles  separate  exponentially,  giving (6,6,) range behavior of two-dimensional turbulence is still in de-
«\~1n(L/ry,), where\ is the Lyapunov exponent of the bate[8-10. Moreover, even though one can show that en-
flow. Had vorticity behaved exactly as a passive scalar, th€rgy spectreE(k)ek™® with a>3 are structurally unstable
pair correlator w;w,)eIn(L/r;,) would have given the en- SO that an ultimate small-scale asymptotics has to feave
ergy spectruniE(k) = k|v,|2ck 3 [1-3]. Note that the loga- =3 [4.5], coherent structures may steepen the energy spec-
rithmic correlator of vorticity means that velocity is not ex- trum at intermediate wave numbdtkl, 12). Freely decaying
actly smooth but has at least logarithmic singularitiesturbulence spontaneously develops coherent vortjde
contradicting the initial assumption,—uv,%r,,. Clearly, and is not the appropriate case for studying Kraichnan scal-
vorticity is not passive and the separation of fluid particles igng. A particular forcing that does not allow the formation of
sensitive to the value of vorticity they carfjor example, ~coherent structures has to be introduced. To this purpose, we
separation is suppressed inside vortices, i.e., regions ofs€ a forcings correlated in time. A constant energy flux is
strong vorticity. Generally, analogies between active andinjected at large scales {&&k<5). The phases of the corre-
passive quantities may be very misleading, as they are, fgiponding Fourier modes are randomly changed at each inte-
instance, between vorticity and magnetic field in 3D and vegration step._ The Fourier transform of the force is as follows:
locity and passive scalar in the Burgers equafiéh How-  f(k)=F(k)e'%. HereF (k) =F, for 4<k<5 and zero else-
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mean enstrophyZ=((V?#)?)/2 are conserved. Angular
brackets here indicate an average over the whole domain.
After the statistically stationary state is reached, the integra-
tion is continued for a very long timgnore than a thousand
eddy turnover timed,=Z"%?). A snapshot of the vorticity
field in this regime is shown in Fig. 1. During this period of
time, the variations around the mean values are within 1%
for the energy and within 4% for the enstrophy. From the
vorticity equation(1), the equation for the enstrophy spec-
trum Z(k) can be obtained

19Z(k) dP(k) 8
Here ® (k) is the enstrophy flux, and{(k) is the enstrophy
forcing. In the stationary regime, the time derivative van-
ishes. Force is confined to a limited wave-number band,
therefore, at the other wave numbers the nonlinear term
dP(k)/ ok has to be balanced by the dissipative one. We
have verified that below the forcing scalkeL(>1) the en-
strophy flux® (k) is at least an order of magnitude larger
FIG. 1. A snapshot of the vorticity field in the statistically sta- than the friction dissipation. In the range <k<k, (where
tionary regime. Herep=6x10"7 and x=0.12. The numerical Kg=1/L) forcing and dissipation are negligible or zero, and
integration has been performed with a pseudospectral method inthe enstrophy flux is nearly constadt(k)= 7. The energy
doubly periodic square domain of sig@,27], with (512<x512)  spectrum(3) was suggested precisely for this inertial range.
grid points. All the variables and parameters are dimensionless. The time averageddimensionlessenergy spectrum calcu-
lated in our simulation is shown in Fig.(&. Figure 2b)
where, andgy is a random variable with a uniform distribu- shows the compensated spectra, where the compensation
tion between 0 and 2 The dissipative termd  function is 7 %33 (dotted ling, and 7~ ?33[In(k/ke)]¥3
= — uw+vVee» accounts for two different kinds of dissipa- (solid line). We believe that the logarithmic correction that is
tion: the first term represents linear Ekman friction, while theobserved is significant. Indeed, a power function steeper than
second one represents small-scale viscous dissipation. k=2 does not provide a fit as good as the logarithmic cor-
stead of the standard molecular dissipation proportional teected function does. Such an accurate fit is made possible
V2w, here we consider an iterated Laplaci&®() to con-  here by very large statistics that smooth out the statistical
fine dissipation to small scales, such that the Kolmogorowoise in the spectrum. We believe that our data together with
scalek,, is close to the smallest resolved scale. Such hyperan alternative approach by spectral reduct[@h support
viscosity is of common use in numerical simulations, evenlogarithmic renormalization of the energy spectrum in the
though one cannot be totally certain that it does not affect thgorticity cascade.
properties of the spectrum in the inertial range. With an ap- Other studies have been recently performed on the direct
propriate choice of parameter values, this system does ne@ascade, showing steep energy spectra, and providing theo-
develop coherent structurg$4,15. retical arguments for the existence of power-law spectra,
Starting from any initial condition, force and dissipation whose scaling depends on the friction coefficigh6,17].
eventually compensate each other, leading to a statisticalljowever, the inertial range is absent in those cases because
steady configuration where mean eneByy ((V)?)/2 and  the large friction does not allow for the existence of a range
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FIG. 2. Energy spectrurfupper pangland compensated energy spectoaver pane), where the compensation function&3> (dashed
line) and %[ In(k/k) 1+ (solid line).
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FIG. 3. Time averaged probability distribution function of the
modulus of the normalized vorticity. The dashed line indicates a FIG. 4. Conditional average of the viscous term as a function of
Gaussian distribution with the same variance. the vorticity in the point where the iterated Laplacian is calculated.

where forcing and dissipation are both negligible. Those V8w),+ can also be non-Gaussian. The presence of nonlin-
works thus refer to a totally different regime. earity in Eq.(5) is sufficient to get a stationary vorticity PDF

In Fig. 3 the probability density functio@PDF of the that is non-Gaussian. The physical meaning of this nonlin-
modulus of the normalized vorticityw|/ o, is shown. Here earity and non-Gaussianity is transparent: the spatial struc-
o, is the vorticity rms. The vorticity distribution has tails ture of the field is such that dissipation on fluid particles with
higher than a Gaussian distributiéshown with the dashed large vorticity is weaker than in a random field with the same
line in the same figude The large statistics that we have variance. The probability of having fluid particles with large
gives confidence up to 6, in the tail of the distribution. vorticity is then larger than for a Gaussian, as seen from the
Note that vorticity PDF found here is similar to the passivetails of the distribution in Fig. 3.
scalar probability density function that is known to have a To conclude, in this study we show the presence of the
Gaussian core and exponential tail4,18. The non- logarithmic correction in the energy spectrum of the direct
Gaussianity of the vorticity PDF is due to an interplay be-cascade of two-dimensional turbulence and observe the non-
tween advection and viscosity. In the absence of the viscouSaussianity of the vorticity PDF. A moderate resolution
term, the vorticityw* of a fluid particle satisfies a Langevin (512x512) has been used to allow a very long integration
equationdw*/dt=f(t) in the Lagrangian frame. The single- (more than a thousand eddy turnover tijéshis was nec-
point vorticity PDF is then Gaussian under Gaussian pumpessary because forced two-dimensional turbulence can vary
ing. When viscous dissipation is taken into account, the evoen long time scales. Our long integration ensures that the
lution equation for the vorticityw* of a fluid particle has a sSystem is really in a statistically stationary state and allows
term that depends not only oa*, but also on the spatial for the computation of time averaged spectra that have a

distribution of the vorticity field: higher confidence. In a recent paper Lindborg and Alvelius
. [9] report simulations with a higher resolution (4096
do*/dt=—pe* —vVie(w™®)+f(1). (5 x4096) but on a much shorter time intervdhe whole

ength of the simulation was about 23 eddy turnover times

In a field with spatial and phase correlations, the conditional;, -+ is too short to allow for a stationary statistics

averagd V8w) .« over all the fluid particles witly = 0* can
be a nonlinear function ob* (see Fig. 4 for the present C.P. would like to thank G. Boffetta, A. Provenzale, and P.
case. The distribution ofV8w(w*) around the mean value Tabeling.
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